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Abstract

We propose a generative modeling framework – namely,
Dynamic Tree Structured Belief Networks (DTSBNs) and
a novel Structured Variational Approximation (SVA) in-
ference algorithm for DTSBNs – as a viable solution
to object recognition in images with partially occluded
object appearances. We show that it is possible to assign
physical meaning to DTSBN structures, such that root
nodes model whole objects, while parent-child connections
encode component-subcomponent relationships. Therefore,
within the DTSBN framework, the treatment and recog-
nition of object parts requires no additional training,
but merely a particular interpretation of the tree/subtree
structure. As such, DTSBNs naturally allow for multi-stage
object recognition, in which initial recognition of object
parts induces recognition of objects as a whole. As our
reported experiments show, this explicit, multi-stage treat-
ment of occlusion outperforms more traditional object-
recognition approaches, which typically fail to account for
occlusion in any principled or unified manner.

1. Introduction

In this paper, we address the problem of object recogni-
tion in images, where some or all objects may be partially
occluded;1 for the purposes of this paper, we assume
that objects are opaque and rigid, and are statistically
independent. Generally speaking, object recognition entails
three related components: (1) localization, (2) detection
and, finally, (3) recognition of objects. A number of
factors contribute to the difficulty of this problem including
variations in camera quality and position, wide-ranging
illumination conditions, extreme scene diversity, and the
randomness of object appearances and locations in scenes.
Partial occlusion of objects substantially complicates the
problem further [1]–[3]. Thus, there is inherent uncertainty
in how observed visual evidence in images should be
attributed to infer object types and their relationships.

We seek a framework that is sufficiently expressive
to cope with this uncertainty, jointly addresses the three
sub-problems for the object recognition problem in a

1Herein, we focus on single-image interpretation. We do not rely on
auxiliary information provided, for example, by image sequences of the
same scene, where occlusions may be transitory.

(a) (b)
Fig. 1. (a) Fixed-structure TSBN; (b) DTSBN; white nodes denote
hidden RVs and black nodes denote observable RVs.

unified manner, and extends seamlessly to partially oc-
cluded settings. As we discuss further below, generative
dynamic-structure models – specifically, Dynamic Tree-
Structured Belief Networks (DTSBNs) [4], [5] – offer such
a framework. DTSBNs can locate and detect objects simul-
taneously through a structure search over dynamic forests
of trees, such that root nodes model whole objects. As il-
lustrated in Fig. 1, they differ from fixed-structure TSBNs,
and overcome the “blocky segmentation” characteristic
of TSBNs [6]–[9]. Not only do root nodes in DTSBNs
model whole objects, but subtrees model object parts at
various scales, so that parent-child connections encode
component-subcomponent relationships. Therefore, within
the DTSBN framework, the treatment and recognition of
object parts requires no additional training, but merely a
particular interpretation of the tree/subtree structure.As
such, DTSBNs offer a viable means of recognizing objects,
even when partially occluded, through recognition of their
constituent parts.

When considering the recognition of detected objects,
one can employ a range of strategies. Traditionally, indi-
vidual pixels are labeled as one ofC classes, and then
a majority vote decides on the class of the object as
a whole. When objects are partially occluded, however,
such an approach may not yield the best results. Instead,
we propose a different approach, where we assign class
labels not to individual pixels but rather toobject parts,
or groups of pixels, as encoded through DTSBN subtrees.
Majority voting then proceeds not on pixel class labels,
but over object-part class labels. We hypothesize that
such an approach to recognition may be more resilient to
occlusion and therefore more appropriate when considering
the recognition of partially occluded objects.

Thus, our choice of a generative, dynamic-structure
framework is directly driven by our image interpretation
strategy and goals, and appears better suited than alter-
native statistical approaches, such as descriptive, pseudo-
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descriptive or discriminative models [10]. Descriptive
models lack the necessary structure we seek to exploit
in object recognition, while discriminative approaches di-
rectly model conditional distributions of hidden variables
given observables, and thereby loose the convenience of
assigning physical meaning to the statistical parameters of
the model.

One of the principal challenges in applying DTSBNs
to image interpretation is the derivation of efficient al-
gorithms for inference, whereby model parameters are
learned. Herein, we propose a novel Structured Variational
Approximation (SVA) algorithm that relaxes independence
assumptions in prior work [4], [5], where positions of
nodes are treated as independent of the model’s structure.
We, however, take into account their statistical dependence
and, thus, achieve significantly faster convergence over
currently available algorithms.

This paper is organized as follows. We first define
DTSBNs and discuss probabilistic inference and learning
for these models. Next, we report experimental results
on DTSBN-based unsupervised image segmentation. We
then proceed to experimental results on supervised image
classification of scenes with partially occluded objects.
We contrast performance of DTSBNs with Markov Ran-
dom Fields (MRFs) [11], Discriminative Random Fields
(DRFs) [12], and fixed-structure TSBNs [9], and show that
DTSBNs, trained using SVA, outperform all these alter-
native modeling paradigms. Furthermore, in partially oc-
cluded settings, we demonstrate that recognition strategies
conditioned on correct labeling of object parts, as identified
through DTSBN learning, improves overall whole-object
recognition. These results suggest that the proposed multi-
stage recognition procedure allows for more flexible and
accurate interpretation of complex scenes with occlusions.

2. Definition of DTSBN

A DTSBN is a directed graph with nodes in setV , orga-
nized in hierarchical levels from the finest (i.e., leaf level)
to the coarsest (i.e., root level). The network connectivity
is represented by a matrixZ, where entryz(ij)=1 if there
is a connection between nodesi andj. Z also contains an
additional zero (“root”) column, where entriesz(i0) are
set to 1 if i is a root node. Connections are established
under constraints that no leaf node can be a root and that
a node can connect only to the nodes at the next coarser
level. We define the distribution over tree connectivity as

P (Z) =
∏

i,j∈V

[γ(ij)]z(ij) , (1)

whereγ(ij) is the probability ofi being the child ofj.
Next, each node is characterized by the position of

the object part it represents relative to the position
of its parent, thereby explicitly expressing geometric

component-subcomponent relationships. The joint proba-
bility of R={ri}, ∀i ∈ V , is given by

P (R|Z)=
∏

i,j∈V

[
exp

(
− 1

2 (ri−rj)
T Σ−1

ij (ri−rj)
)

2π|Σij |
1

2

]z(ij)

,

(2)
whereΣij denotes the covariance matrix representing the
size of object parts at various scales.

Further, each nodei is characterized by a state, repre-
sented by an indicator random variable,x(ik), such that
x(ik)=1 if i is in statek. Node states denote labels of
image classes in setM . The state ofi is conditioned
on the state of its parentj and is given by conditional
probability tablesP kl

ij . The joint probability of all state
variables,X={x(ik)}, ∀i∈V , can be expressed as

P (X |Z) =
∏

i,j∈V

∏

k,l∈M

[
P kl

ij

]x(ik)x(jl)z(ij)
. (3)

Thoughx’s, ∀i ∈ V , represent the same image classes at
all levels, their positions in the tree structure additionally
encode component-subcomponent relationships in an im-
age. Thus the root node represents the whole object, and
its children, object parts.

Next, node states determine the likelihood of observable
random vectors,yi, connected to the leaf nodes, denoted
asV 0. The joint pdf of all observablesY ={yi}, ∀i∈V 0,
is given by,

P (Y |X) =
∏

i∈V 0

∏

k∈M

p(yi|x(ik)=1) , (4)

wherep(yi|x(ik)=1) is modeled as a mixture of Gaussians
with G components.

Finally, our DTSBN is fully specified by the joint dis-
tribution P (Z, X, R, Y )=P (Z)P (X |Z)P (R|Z)P (Y |X).

3. Probabilistic Inference and Learning

Due to the complexity of DTSBNs, the exact computa-
tion of P (X |Y ), required, for example, for Bayesian pixel
labeling, is intractable. Therefore, to computeP (X |Y ),
we resort to approximate methods, which are generally
subdivided into deterministic approximations [13] and
Monte-Carlo methods [14]. Note that we need to learn
our dynamic-tree model in the space of possible tree
structures. Due to an intractably large number of configura-
tions, Monte-Carlo methods require prohibitively extensive
sampling, as we demonstrate for the case of binary8 × 8
images in Section 4. Consequently, we propose a varia-
tional inference method – namely, Structured Variational
Approximation (SVA).

Variational-approximation inference methods can be
viewed as minimizing a convex cost function known asfree
energy, which measures the accuracy of an approximate
probability distribution [13], [15]. Essentially, the idea
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is to approximate the true intractable posterior distribu-
tion, in our caseP (Z, X, R|Y ), by a simpler distribution
Q(Z, X, R) closest toP (Z, X, R|Y ), by minimizing the
free energyJ(Q, P ):

J(Q, P ) =
∑

Z,X,R

Q(Z, X, R) log
Q(Z, X, R)

P (Z, X, R, Y )
. (5)

We constrain the solution of the variational distribution
to the form

Q(Z, X, R) = Q(Z)Q(X |Z)Q(R|Z) . (6)

This formulation enforces that both state-indicator vari-
ables X and position variablesR should be statisti-
cally dependent on the tree connectivityZ. Since these
dependencies are significant in the prior, one should
expect them to remain so in the posterior. Therefore,
the chosen form appears to be more appropriate for
approximating the true posterior than theQ function
proposed by Storkey and Williams in [5] of the form
Q(Z, X, R)=Q(Z)Q(X |Z)Q(R). The R variables con-
tribute in the search of dynamic-tree structure by favoring
connections among neighboring nodes and, as such, are
clearly not independent of network connectivityZ.

The approximating distributions are defined as

Q(Z)=
∏

i,j∈V

[δ(ij)]
z(ij)

, (7)

Q(X |Z)=
∏

i,j∈V

∏

k,l∈M

[
Qkl

ij

]x(ik)x(jl)z(ij)
, (8)

Q(R|Z)=
∏

i,j∈V

[
exp

(
−1

2 (ri−µj)
T Ω−1

ij (ri−µj)
)

2π|Ωij |
1

2

]z(ij)

,

(9)

whereδ(ij) corresponds toγ(ij), Qkl
ij is analogous toP kl

ij ,
and µj and Ωij are the mean and the covariance of the
parentj position, respectively.

3.1. Update Equations

By minimizing the free energyJ(Q, P ), we derive
the update equations for the parameters of the variational
distribution Q(Z, X, R). For space reasons, below we
summarize the final derivation results. In the extended
version of this paper, we report the full derivation. In the
following equations, we will useκ to denote an arbitrary
normalization constant, the definition of which may change
from equation to equation.

From Eq. (7) and Eq. (8), we derive the update equation
for the probabilitymk

i that nodei is in statek as

m̂k
i =

∑

j∈V

δ(ij)
∑

l∈M

Qkl
ijm

l
j . (10)

Then, from
∑

k∈M Qkl
ij=1 and ∂J(Q, P )/∂Qkl

ij=0 we
arrive at:

Q̂kl
ij = κP kl

ij λk
i , ∀i, j ∈ V , ∀k, l ∈ M , (11)

where auxiliary parametersλk
i are computed,∀k∈M , as

λ̂k
i =






∏
c∈V

[∑
a∈M P ak

ci λa
c

]δ(ci)
, ∀i ∈ V \ V 0 ,

p(yi|x(ik) = 1) , ∀i ∈ V 0 .
(12)

From Eq. (12), we note that thêλ’s are computed by
propagatingλ messages of corresponding children nodes
upward. Thus,Q̂ can be computed by making a single
pass up the tree and̂m can be computed by propagating
state probabilities in a single pass downward. This upward-
downward propagation is very reminiscent of Pearl’s mes-
sage passing scheme. For the special case whenδ(ij) = 1
only for one parentj, we obtain the standardλ-π rules of
Pearl’s message passing scheme for TSBNs [5], [16].

The Gaussian assumption in Eq. (9) implies
that Q(R|Z) is fully characterized byµi and Ωij ,
∀i, j∈V . Assuming thatΩij is positive definite, from
∂J(Q, P )/∂Ωij=0 and ∂J(Q, P )/∂µi=0, for all nodes
whereδ(ij)6=0, we derive

Tr{Ω̂−1
ij }=Tr{Σ−1

ij }



1−
∑

p∈V

δ(jp)
Tr{Σ−1

ij Ωjp}
1

2

Tr{Σ−1
ij Ωij}

1

2



+

+
∑

c∈V

δ(ci)Tr{Σ−1
ci }

(
1−

Tr{Σ−1
ci Ωci}

1

2

Tr{Σ−1
ci Ωij}

1

2

)

(13)

µ̂i=




∑

g,c,p∈V

(
δ(ci)δ(ip)Σ−1

ci + δ(gc)δ(ci)Σ−1
gc

)



−1

·

·
∑

g,c,p∈V

(
δ(ci)δ(ip)Σ−1

ci µp + δ(gc)δ(ci)Σ−1
gc µc

)
.

(14)

Hence, botĥµi andΩ̂ij are updated summing over children
and parent nodes and, therefore, must be iterated until
convergence.

Clearly, there is no unique solution to Eq. (13). To
update theΩ′s, we assume that both theΣ′s and the
Ω′s are diagonal. Also, it is not guaranteed thatΩ̂ij , as
a solution of Eq. (13), is positive definite, because we
assume that relative distances(ri − µj) and(rj − µp) are
uncorrelated, wherei-j-p form a node-parent-grandparent
triad. However, in our extensive experimentation, this
rarely ever occurs. In those seldom cases that we do
encounter this problem, we “freeze” the contribution of
that node to the overall belief propagation, using its old pa-
rameter values from the previous iteration. This approach
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is justified in light of the incremental variant of the EM
algorithm discussed by Neal and Hinton in [17].

Finally, minimizingJ(Q, P ) with respect to connectiv-
ity probabilities,δ(ij), and accounting for the constraint∑

j∈V δ(ij) = 1, we obtain

δ̂(ij) = κγ(ij) exp(Aij − Bij) , ∀i, j ∈ V , (15)

whereAij represents the contribution of the actual feature
statistics (i.e., observable variablesY ) to the connectivity
distribution andBij represents the geometric properties of
the network connectivity. These are computed,∀i, j ∈ V ,
as follows:

Aij =
∑

l∈M

ml
j log

(
∑

k∈M

P kl
ij λk

i

)
, (16)

Bij = 0.5 log |Σij |/|Ωij | + 0.5 Tr{Σ−1
ij Ωij} +

+0.5
∑

p∈V

δ(jp)Dijp + 0.5
∑

c∈V

δ(ci)Dcij , (17)

Duvw = Tr{Σ−1
uv Ωvw}+Tr{Σ−1

uv (µv − µw)(µv − µw)T }−

−2Tr{Σ−1
uv Ωuv}

1

2 Tr{Σ−1
uv Ωvw}

1

2 . (18)

3.2. Learning

Variational inference presumes that the parameters that
specifyP (Z, X, R, Y ) are available. In order to learn these
parameters, initially, we build a balanced TSBN, where
every parent has exactly four children nodes. Then, using
the exact inference of Pearl’s message passing scheme
[16], we learnP kl

ij , mk
i , and parameters of the Gaussian

mixture p(yi|x(ik)=1),2 ∀i, j ∈ V , ∀k, l ∈ M . Here,
we determine the number of tree levels,L, and the
number of components in a mixture of Gaussians,G, by
maximizing P (Y ) (readily available from Pearl’s belief
propagation) for severalL and G values. Since DTSBNs
are generalized TSBNs, our experimentation suggests that
optimizing L and especiallyG with respect to the TSBN
is justified. Further, we initializeP (Z) such that the
parametersγ(ij) are uniform across all possible parents
of i. To initialize P (R|Z), we equateΣij to the area of
corresponding dyadic squares. As for the parameters of the
variational distributionQ(Z, X, R), we first assign toµi

the coordinates of corresponding dyadic squares. Finally,
we initialize all the variational parameters to the values of
the corresponding parameters ofP (Z, X, R, Y ), such that
δ(ij) = γ(ij), Qkl

ij = P kl
ij , Ωij = Σij .

After initialization, we optimize the parameters of the
variational distribution according to the given update equa-
tions. First, we fix Q(Z) and update the rest of the
parameters. Then, we use these new parameter values
to update theδ′s. Once optimized, theδ′s specify the

2For learning the parameters of a mixture of Gaussians, whichwe
assume equal for all nodes, we employ the EM algorithm [17].

most likely tree connectivity. Unlike in [5], we find the
maximum probabilityδ(ij), ∀i, j ∈ V , and establish only
that connection, deleting other candidate connections with
lower probability. In this manner, we build a forest of
new TSBNs that are not balanced any more, yet preserve
their tree structure. Finally, we close the learning loop,
again performing belief propagation for each subtree using
Pearl’s message passing scheme.

4. Experiments and Discussion

4.1. Image Segmentation

We first discuss the clustering capabilities of DTSBNs3

in unsupervised settings on two data sets: 50 binary8×8
images, a typical sample of which is depicted in Fig. 4,
and 50256×256 images, examples of which are shown
in Figs. 2 and 6. Here, we specify observables,Y , for
DTSBNs as binary or RGB color values, respectively. De-
spite this relatively weak description of image features, the
chosen feature space proves successful for DTSBN-based
segmentation of the given set of test images. This fact
demonstrates good localization and detection capabilities
for DTSBN models, which clearly could be enhanced by
using more powerful image features (e.g., SIFT descriptors
[18]). From the results presented in Figs. 2, 3 and 4, we
observe that DTSBNs, trained with SVA, are able to cor-
rectly assign one subtree per “object” in an image, where
a cluster of pixels descending from a root corresponds to
the whole object, and clusters descending from higher level
nodes underneath the root correspond to object parts.

From Figs. 2 and 3, we observe that DTSBNs pre-
serve tree structure for objects across images subject to
affine transformations (translation, rotation and scaling). In
Fig. 2, note that the level-4 clustering for the largest-object
scale (Fig. 2a, bottom) corresponds to the level-3 clustering
for the medium-object scale (Fig. 2b, middle); similarly,
the level-4 clustering for the medium-object scale (Fig. 2b,
bottom) corresponds to the level-3 clustering for the small-
object scale (Fig. 2c, middle). In other words, as the object
transitions through scales, the tree structure changes by
eliminating the lowest-level layer; however, higher-order
structure remains intact.

We also note that the estimated positions of higher-
level hidden variables are very close to the center of
mass of object parts, as well as of whole objects. We
estimate the error of root-node positions(xr , yr) as a
distance in pixels from the actual center of mass of hand-
labeled objects,derr=

√
(xr−xCM )2+(yr−yCM )2. The

obtained averaged error values ared8×8
err =1.8 (22% of the

image size), andd256×256
err =11.4 (4% of the image size),

for the 8×8 and256×256 images, respectively. The error

3Each DTSBN node defines one cluster composed of those DTSBN
leaf nodes (pixels) that are that node’s descendants.
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(a) (b) (c)
Fig. 2. DTSBN-based pixel clustering in RGB color space: scale
invariance. (top row)256 × 256 images; (middle row) pixel clusters
with the same parent at level3; (bottom row) pixel clusters with the
same parent at level4; points mark the position of parent nodes; DTSBN
structure is preserved through scales.

(a) (b) (c)
Fig. 3. DTSBN-based pixel clustering in RGB color space: rotation
invariance. (top row)256×256 images; (bottom row) pixel clusters with
the same parent at level3. DTSBN structure is preserved over rotations.

significantly decreases as the image size increases, because
in summing node positions over parent and children nodes,
as in Eq. (13) and Eq. (14), more statistically significant
information contributes to the position estimates.

Next, we compare convergence of SVA with the follow-
ing inference algorithms: Gibbs sampling [19], mean-field
variational approximation (MFVA) proposed in [4], and
variational approximation (VA)4 discussed in [5]. In Figs 4

4As we noted before, the inference method proposed in [5] is also
structured variational approximation. To differentiate that method from
ours, we slightly abuse the notation.

Fig. 4. DTSBN-based pixel clustering: (top left)8 × 8 binary image;
(down left) 9 clusters of pixels specified by 9 parents at level 1;
points mark the position of parent nodes; (right) averaged log-likelihoods
log P (Y |X) for the binary image to the left; SVA converges significantly
faster than other inference methods.

Fig. 5. Averaged log-likelihoodslog P (Y |X) for 256 × 256 image in
Fig. 2a; SVA is more stable and converges significantly faster than VA.

and 5, we plot the averaged log-likelihood,log P (Y |X),
obtained after the specified number of iteration steps for
images in Fig. 4(left) and Fig. 2a. Iteration was stopped
when segmentation of the image stabilized. We averaged
log P (Y |X) over the number of training cycles for a given
logarithmic scale. Obviously, Gibbs sampling yields the
greatestlog P (Y |X), albeit at a huge computational price.
With the increase in image size, Gibbs sampling becomes
unfeasible and MFVA exhibits very poor performance.
Therefore, for256 × 256 images, we report results only
for SVA and VA. SVA converges in the fewest number of
iterations, an order of magnitude faster than the second-
place VA.

The average clustering error over the 50 binary test
images is 8% for VA and 6% for SVA, and, over the 50
256×256 images, is 8% for VA and 4% for SVA. Here, the
reported results account only for “real objects” (i.e. not the
background), and errors are relative to hand-labeled ground
truth.

4.2. Image Classification

Here, we consider a finite number of objects represent-
ing image classes. Our training data set comprises 20 care-
fully chosen images per object to account for variability in
illumination and/or camera position, as illustrated in Fig. 6.
Image classification is conducted on 50 test images, which
contain a total of 162 partially occluded objects, examples
of which are shown in Figs. 7a and 9a; Herein, we compare
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O1 O2 O3 O4 O5

Fig. 6. Training images of objects, which we refer to asO1-O5.

(a) 256 × 256 (b) MRF (c) DRF (d) TSBN (e) DTSBN
Fig. 7. Comparison of classification results for various statistical models; pixels are labeled with a color specific foreach object; non-colored pixels
are classified as background.

classification performance of DTSBNs, learned using SVA,
with MRFs, DRFs, and TSBNs being representatives of
descriptive, discriminative and simple-structure generative
models, respectively.

For MRFs, we assume that the label fieldP (X) is a
homogeneous and isotropic MRF, given by the general-
ized Ising model with only pairwise nonzero potentials
[11]. The likelihoodsP (yi|xi) are assumed conditionally
independent given the labels. Thus, the posterior energy
function is given by

U(X |Y ) =
∑

i∈V 0

log P (yi|xi)+
∑

i∈V 0

∑

j∈Ni

V2(xi, xj),(19)

V2(xi, xj) =

{
βMRF , if xi = xj ,
−βMRF , if xi 6= xj .

(20)

whereNi denotes the neighborhood ofi, P (yi|xi) is aG-
component mixture of Gaussians, andV2 is the interaction
parameter. DRFs are learned as proposed in [12]; for these
models, the posterior energy function is given by

U(X |Y )=
∑

i∈V 0

Ai(xi, Y )+
∑

i∈V 0

∑

j∈Ni

Iij(xi, xj , Y ),(21)

whereAi= log σ(xiW
T yi) andIij=βDRF (Kxixj+(1−

K)(2σ(xixjV
T yi) − 1)) are the unary and pairwise po-

tentials, respectively. Since the above formulation deals
only with binary classification (i.e.xi ∈ {−1, 1}), when
estimating parameters{W, V, βDRF , K} for an object, we
treat that object as a positive example, and all other objects
as negative examples. Training of TSBNs is conducted as
specified in [20].

Next, we briefly describe image features used for ob-
servablesY ; a more detailed treatment of these features
is given in [20]. We account for both color and texture.

To extract color features, we choose the generalized RGB
color space,r = R/(R+G+B), andg = G/(R+G+B),
which effectively normalizes variations in brightness. For
texture analysis, we choose the complex wavelet transform
(CWT), due to its inherent representation of texture at
different scales, orientations and locations. The CWT’s
directional selectivity is encoded in six subimages of
coefficients oriented at angles±15◦, ±45◦, and±75◦. To
limit the dimensionality of our feature space, we apply
our algorithm for adaptive feature selection proposed in
[20], selecting only the two most discriminative subimages
from the CWT feature set. Thus, to each pixel at position
i we assign a feature (observable) vectoryi containing
correspondingr, g, and CWT values.

Given the chosen feature representation, we perform
MAP image classification; ground truth for each image is
determined through hand-labeling of pixels. Here, we say
that an object is recognized as that object if the majority
of assigned pixel labels are equal to the true labeling. We
refer to this strategy as traditional.

In Fig. 7, we illustrate an example of pixel labeling for
a complex-scene test image, while in Fig. 8, we report the
confusion matrix for DTSBNs over the entire test set. For
the given set of test images, we detect all objects, although
swapped object identities do occur in recognition, as repre-
sented by non-zero off-diagonal elements in the confusion
matrix. Swapped-identity errors range from 21% for MRFs
(worst) to 10% for DTSBNs (best); misclassified-pixel
errors averaged over the 50 test images and 162 objects
are 17% for TSBNs and MRFs, 16% for DRFs, and 14%
for DTSBNs.

From these results, we note that while DTSBNs out-
perform the other three models, in general, recognition
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Fig. 8. The confusion matrix for DTSBN-based MAP classification of
50 test images containing a total of 32O1, 28 O2, 43 O3, 19 O4, and
40 O5 partially occluded objects; columns indicate ground truth.

performance suffers substantially when an image contains
occlusions. To some extent, the results could have been
improved had we employed more discriminative image
features. However, better image features will not alleviate
the fundamental problem of the traditional strategy: to train
statistical models on full-appearance objects and to use
these models for recognition of partially occluded objects.
As such, we now focus on recognition strategies beyond
majority rule that may prove to be more optimal for images
with occlusion. We begin with a detailed two-class case
study to motivate our approach.

From the confusion matrix in Fig. 8, we note that
mislabeling of objectO3 as O5 contributes more than
any other single error to the reported swapped-identity
error. Therefore, we further investigate classification of
these two objects in greater detail. In Fig. 9, we present
MAP classification results, assuming only two possible
image classes – namely,O3 andO5. Next, in Fig. 10, we
plot ROC curves for various decision boundaries between
likelihoods of O3 and O5, where pixels labeled asO5

are considered true positives, while pixels labeled asO3

are considered true negatives. From Fig. 10, we observe
that higher true positive rates come at the substantial
cost of large increases in the false positive rate. On the
other hand, biasing the decision boundary to favor true
negatives, we obtain better recognition ofO3 than for
MAP classification, with a permissible loss of sensitivity
for O5. For example, with a modified decision criterion
(MDC), yielding a 90% true positive rate for the image in
Fig. 9, we are able to reduce the swapped-identity error
for DTSBNs from 10% to 8%, as can be observed from
the new confusion matrix for DTSBNs in Fig. 11a over the
same 50 test images with 162 partially occluded objects.

As the two-class example illustrates, majority-voting
under MAP classification may not be the most appropriate
recognition strategy for scenes with partial occlusion.
However, even a better suited classification criterion does
not yield satisfactory classification, as compared to stan-
dard recognition results for non-occluded object appear-
ances [10], [20]. Therefore, it is necessary to introduce
more radical changes to the traditional strategy. We specu-
late that in the face of the occlusion-problem,recognition

Fig. 10. ROC curves for the image in Fig. 9a with DTSBNs, TSBNs,
DRFs and MRFs.

of object partsis critical and should condition recognition
of the object as a whole. Thus, we now propose another
recognition strategy that proceeds in two stages. First, each
“small” image region is classified as part of an object if
the majority of its pixel labels, assigned through MAP or
some other classifier, are equal to the true labeling of that
object. That is, in the first stage, “small” image regions are
classified as object parts. In the second stage, the whole
object is recognized as that object if the majority of its
object parts are recognized as components of that object.

Recall from Section 4.1 that DTSBNs are capable of
capturing component-subcomponent structures at various
scales, such that DTSBN root nodes represent the center
of mass of distinct objects, while children nodes down the
subtrees represent object parts. As such, DTSBNs provide
a natural and seamless framework for identifying candidate
image regions as object parts, requiring no additional
training for such identification. Thus, the first stage of
recognition now begins by treating children nodes (i.e.
subtrees) of each root in a DTSBN as new roots of
the corresponding image regions. We then assign labels
to all pixels that are descendants of these new roots,
and proceed with majority voting to label image regions
(corresponding to subtrees) as particular object parts. Note
that the treatment of subtrees here is exactly the same as
whole-object trees before. Finally, the original root nodes
inherit the class labels that are shared by the majority of
their corresponding subtrees.

In Fig. 11b, we report the confusion matrix for this
two-stage recognition strategy over the same 50 test images
with 162 partially occluded objects. Note that the swapped-
identity error has been reduced from the original 10% (and
8% for the MDC) to 6%, and that this improvement did
not require any class-specific fine-tuning of the decision
criterion (as was the case in the MDC example).

5. Conclusion

In this paper, we advocate generative, dynamic-structure
models for object recognition in images where objects
may be partially occluded. We first defined Dynamic Tree
Structure Belief Networks (DTSBNs) as the underlying
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(a) 256 × 256 (b) MRF (c) DRF (d) TSBN (e) DTSBN
Fig. 9. Two-class pixel labeling using different statistical models.

(a) (b)
Fig. 11. Confusion matrices for DTSBNs over 50 test images containing
a total of 32O1, 28 O2, 43 O3, 19 O4, and 40O5 partially occluded
objects, using: (a) the modified classification criterion (MDC); (b) two-
stage strategy, based on object parts; columns indicate ground truth.

framework, and developed an inference algorithm for
these models that (1) relaxes poorly justified independence
assumptions, and (2) is shown to converge an order of
magnitude faster than competing algorithms. Next, we
demonstrated the capability of DTSBNs to capture impor-
tant component-subcomponent structures in unsupervised
image segmentation. Finally, we reported supervised image
classification experiments for partially occluded appear-
ances that (1) demonstrate better performance of the pro-
posed generative framework (i.e. DTSBNs) compared with
other statistical models; and (2) suggest novel multi-stage
recognition strategies based on classification of object
parts.

The results presented in this paper raise a number
of interesting points for further research. For instance,
the two-stage strategy outlined above is certainly not the
only one possible (let alone optimal) within the DTSBN
framework; for example, the treatment of object parts need
not be confined to subtrees one level below root nodes. No
matter what parts-based strategy is implemented, however,
it will still require successful identification of object parts
through DTSBN learning.
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