
Visual Perception Based Behaviors
for a Small Autonomous Mobile Robot

Scott Jantz† and Keith L Doty‡

†Machine Intelligence Laboratory ‡Mekatronix, Inc.
Department of Electrical and Computer Engineering Gainesville, FL
University of Florida, USA
Tel. (352) 392-6605 Tel: (352)376-7373
Email: < scott@mil.ufl.edu> Email: <doty@mekatronix.com>
URL: <www.mil.ufl.edu> URL: < www.mekatronix.com>

2000 Florida Conference on Recent Advances in Robotics
May 4-5, 2000, Florida Atlantic University

Abstract
In this paper we describe three vision-
based behaviors for mobile autonomous
robots. The first behavior is vision
based collision avoidance. The second
behavior is a tracking behavior, which
allows the study of autonomous robots
moving in a room. The third behavior is
the use of the tracking program to
communicate to the robot where it is and
how to get to its goal, a type of visual
servoing. All of these behaviors are
implemented on the TJ Pro™ robot with
the Argos™ pan-tilt head. 1 The PC is
connected to the robot through RF serial
and video connections.

Introduction
The TJ Pro™ [Doty 1999a][Doty 1999b]
with an Argos platform [Doty 2000]
(Figure 1), coupled with RF data and
video links provides an excellent test bed
for visual behaviors in autonomous
robots. By removing the video
processing from the robot we gain
several advantages for our research. The
first advantage is cost. The robotic
platform is low cost and small because it
does not have to support the video

1 Trademark of Mekatronix, Inc.

processor. Another advantage is the
ease of processor scalability. If a faster
PC becomes available, it can be
interfaced to the robot with no changes
in hardware or software. Although not
covered in this paper, a possible future
application is to interface the robot to a
distributed network of computers
supporting high speed parallel
computation for advanced vision
processing.

Figure 1: TJ Pro robot with Argos pan-tilt
head.

Our use of a high-level computer
language (Visual Basic) allows several
advantages. The use of Visual Basic
first solves the hardware interface
problem; any video capture device is

automatically detected and used to
capture robot video making the robot
vision system platform independent.
The use of a high level programming
language also allows the algorithms to
be easily changed for experimentation
purposes.
 The visual tracking behaviors
described here involve a fixed camera
mounted to provide a bird’s-eye view of
the robot and its environment. The
visual control loop flows from the
camera to the PC and then to the robot
via RF links. These behaviors allow the
PC to track the robot and either send this
information to the robot for use as an
extra sensor or to track the behavior of a
robot under its own control.

Platform
The basic TJ Pro robot contains a
MC68HC11 processor with 32Kbytes of
SRAM. The robot has 2 servomotors for
locomotion, 2 IR proximity sensors and
4 bump switches, 3 in front and one in
back, for contact detection. Robot power
derives from 6 AA NiCd batteries.
Physically the robots are 3.5 inches high
and 6.8 inches in diameter. The Argos
pan-tilt head has 2 servos to move the
sensor head. One pans the sensor head
and the other determines the tilt. On the
sensor head there is a single chip color
CCD camera, a sonar sensor and 2 IR
sensors. Panning of the first servo
moves the sensor head in the horizontal
plane 180°. Tilting the second servo
moves the sensor head in the vertical
plane about 120°. On the back of the
robot is the RF box, which contains the
RF serial, and RF video links.

Hardware Implementation
The video from the color CCD camera is
sent to the computer from the mobile

robot through a 2.4 Gigahertz analog
NTSC four-channel modulator. The
voltage required for the camera and the
video modulator is 12V. In order to
provide 12V from the 6 pack of batteries
(7.8V nominal) we use a switching
power supply. Regulated 5 VDC is also
provided from this board to the RF serial
link. The RF serial link is a 20Kbaud
spread spectrum 900Mhz radio modem.
The choice of 2.4 GHz for video and
900Mhz for data is important. The data
channel would interfere with the analog
video, if they were in the same band.
The spread spectrum data link is noise
immune. The analog video, however,
employs simple FM modulation and
would show noise each time the data
channel sends a data packed. The data
channel is scalable for multiple robots.
Within the packet system there are
thousands of channels on which the
robots can communicate. In the
experiment reported here, there is only
one robot on one channel.
 The hardware for the 3rd person view
experiments differs from the mobile
version only in that the camera and
video link are not on the robot.
 On the computer side, the hardware
consists of a data link connected to the
serial port. The data link requires no
special computer adaptations since the
serial link resembles a serial cable
between the robot and computer.
Software that works with the robot
connected with a serial cable will work
with the data link. For the video, a down
converter is used to demodulate the RF
video back into the NTSC signal that
came from the camera in the first place.
Again the link resembles a direct video
cable connection making for ease of
testing and implementation. To capture
the video we use a Snappy video

snapshot parallel port video capture
device.

Software Implementation
Hardware independence was crucial
when looking at the software
development. In order to accomplish
this goal the software calls all hardware
through standard windows APIs and
controls [Reiser, M. 1999]. The
ezVidCap [Ray Mercer 1999] provides
a seamless software connection to any
video-grabbing device connected to the
computer. Connection to the RS-232
port is accomplished with the Visual
Basic standard MSCOMM control. By
using these features of Visual Basic the
code is completely transportable.
 Computations begin by reading
images into an array. These arrays are
then manipulated in matrix operations to
the desired end of the algorithm.

Behaviors

Robo-centric Collision
Avoidance
For robo-centric behaviors the camera is
mounted on the Argos head attached to
the TJ Pro platform. We base this
behavior on simple frame differences.
The justification for working with
differentials comes from biology
[Carlson 1994] and robotics [Fu,
Gonzalez, & Lee 1987]. To implement
difference frames, subtract each element
in the first frame f(x, y, t1) from each
element in the second and succeeding
frames,
 ∆f(x, y, t,t1) = | f(x,y,t) – f(x,y,t1)| .
This simple calculation determines
changes in the computer view from each
frame to the next from the initial
reference frame. If the scene is static,
except for the moving robot, the changes

represent the current location of the
robot and the possible collisions. In the
delta frame, ∆f(x, y, t,t1), which is
referenced to the frame at fixed time t1,
we use several assumptions to simplify
the calculations. In the camera image
we assume that the bottom half of the
frame is floor and the top half is
background due to the robot’s close
proximity to the floor and the camera
position on the Argos pan-tilt head. This
assumption allows us to ignore a
complex and changing background and
focus on objects in the foreground,
which are possible obstacles. If the
bottom half of the robot’s view starts
changing then there is probably an object
coming towards the robot. To derive
information from the floor-half of the
image in a form that makes decision

making easy at time t, the robot performs
the image calculations
Where X and Y are the limits of the
image and sumleft and sumright are the
resultant numbers, which show where
the movement (and hence the object) is
most prevalent. The robot simply moves
in the direction of least movement, i.e.,
left if sumright > sumleft and right if sumright

< sumleft. This simple comparison allows
the robot to avoid most obstacles.
Figure 2 shows the collision avoidance
system in action.

∑ ∑

∑∑

= =

= =

∆=

∆=

X

Xx

Y

y
right

X

x

Y

y
left

ttyxfsum

ttyxfsum

2/

2/

0
1

2/

0

2/

0
1

),,,(

),,,(

Figure 2: TJ Pro vision system in action first
2 pictures show successive frames. 3rd Image
shows the differential image.

Fixed Camera View

Tracking an autonomous robot
The algorithm for tracking a robot in a
room scene starts out much like the
collision avoidance behavior with a
frame differential calculation

∆f(x, y, t,t1) = | f(x,y,t) – f(x,y,t1)| .
From the frame differential, the program
must locate the robot in the scene. The
algorithm assumes only the robot moves
in the scene. The algorithm finds the
coordinates of the largest blob change in
the scene,

Where X and Y designate the limits of
the frame and the function MAX returns
the maximum value evaluated between
its limits. For use as a visual tracker
dots are placed on the reference image
where the program has found the robot.
Later to make better sense of the data,

the program draws colored lines between
points to show the direction of travel.
Sample outputs are shown in Figure 3,
Figure 4, and Figure 5.

Figure 3: Early tracking program output.

Figure 4: Tracking a robot in an enclosed
area executing on-board collision avoidance.

Figure 5: Same robot, same arena, just an
added obstacle.

))),,,((()(
2 2

1

5

0

1

0 ∑ ∑∑
+=

=

+=

=

−=

=

−=

=
∆=

jy

jy

ix

ix

Xi

i

Yj

j
ttyxftx MAX

))),,,((()(
2 2

1

5

0

1

0 ∑ ∑∑
+=

=

+=

=

−=

=

−=

=
∆=

jy

jy

ix

ix

Yj

j

Xi

i
ttyxfty MAX

Fixed Camera as Robot Sensor
With the data from the tracking program
and the RF serial link to the robot, the
robot will now use the fixed camera as a
global sensor. For this behavior the
behavior algorithm must calculate the
distance to a goal point (blue spot for
human observers). If either the distance
in the x direction is increasing

|xcurrent – xgoal| > |xlast – xgoal|
or the distance in the y direction is
increasing

|ycurrent – ygoal| >|ylast – ygoal|
then the robot is instructed to turn
always right (or left). If the distance in
both directions is closing (i.e., the robot
is heading in the right direction), then
the robot keeps moving straight. Figure
6 and Figure 7 illustrate sample outputs.

Figure 6. Robot path depicted in red as it
moves toward its goal (blue).

Figure 7: Different robot starting position but
same control as shown in Figure 6.

Results

Collision avoidance
Visual collision avoidance worked well
in high contrast environments with a
featureless floor. This algorithm failed
when the robot approached an object
with the properties of a long featureless
wall where the camera records little to
no visual change as the robot
approaches. The robot could sometimes
see the featureless wall if it caught the
intersection of the floor and wall. Some
tweaking was still required to set the
threshold of avoidance. If this threshold
was set too low then the robot would run
from every slight shadow, too high and it
runs into objects. This threshold also
depends on the lighting (contrast) and
patterns on objects.

Fixed Camera View Tracking
This program produced superb results.
The fixed camera system continuously
tracked the robot in a complex
environment. In the arena we also
observed the performance of robots
executing collision avoidance behavior.
Researchers can use this program to
study the performance of autonomous
robot behaviors by recording the
information with a color camera and
analyzing the data either dynamically, or
off-line, with an RF linked computer.

Fixed Camera View with Goal
Visual servoing on manipulators often
requires sophisticated mathematics and
control. For mobile robots working on a
locally flat terrain, implementation of
visual servoing based on the view of a
“satellite” camera turned out surprisingly
simple and direct. The algorithm to
perform the robot control was robust,
exceedingly simple and worked well.

This program held another surprise, an
interesting emergent behavior. The robot
would overshoot the goal and circle in
like a shark coming in for the kill
(Figure 6 and Figure 7). In multiple
experiments this biological circling
behavior emerged every time when the
simple 2-dimensional control was only
based on whether the x and y distances
to target were increasing or decreasing.

Future Work
Speed optimization of the Visual Basic
code will greatly increase performance.
Several techniques using WINDOWS
APIs and video card hardware should be
able to speed this program up
significantly. Continuous differential
calculation should also improve the
tracking programs by changing the
reference frame to the immediate past
frame instead of a fixed frame at startup
time t1. This approach would increase
the program’s immunity to light changes
and other environmental disturbances.
A clear future goal would be to allow
multiple robot tracking and perhaps the
playing of robot sports. Multiple robot
tracking could be accomplished by using
different colored LEDs, or different LED
configurations, on top of each robot to
identify the robot.
Another future enhancement would
combine the vision data from a fixed,
bird’s-eye view camera with the data
from an onboard robot camera to provide
the robot with exceptional visual
information about the environment for
navigation, mapping and control.

References
Carlson, N. R. (1994). Physiology of
Behavior (5th ed.). Needham Heights,
MA: Allyn and Bacon.

Doty, Keith L. (2000). Argos Assembly
and Users Manual. Mekatronix, Inc.

Doty, Keith L. (1999a). TJ Pro Assembly
Manual. Mekatronix, Inc.

Doty, Keith L. (1999b). TJ Pro Users
Manual. Mekatronix, Inc.

Fairhurst, M. C. (1988). Computer
Vision for Robotic Systems: an
Introduction. New York: Prentice Hall.

Fu, K. S., Gonzalez, R. C., & Lee, C. S.
G. (1987). Robotics: Control, Sensing,
Vision and Intelligence. New York:
McGraw Hill.

Mercer, R. (1998). EzVidCap [On-line].
Available:
http://www.shrinkwrapvb.com/

Petroutsos, E. (1998). Mastering Visual
Basic 6. San Fransisco, CA: Sybex.

Reiser, M. (1999). PC-eye Bot / Toro.
[On-line]. Available:
www.mil.ufl.edu/imdl

