
 

Stabilizing Human Control Strategies through Reinforcement Learning

 

Michael C. Nechyba J. Andrew Bagnell

 

nechyba@mil.ufl.edu dbagnell@mil.ufl.edu

 

Machine Intelligence Laboratory
Electrical and Computer Engineering

University of Florida
Gainesville, FL 32611-6200

            
Abstract

In attempting to build advanced robots with sophisticated in-
telligent behaviors, the modern roboticist does not have to look
far to find examples of such behavior. Humans are, and for the
foreseeable future remain our best and only example of true intel-
ligence. In comparison, even advanced robots are still embar-
rassingly stupid. Consequently, one popular approach for
imparting intelligent behaviors to robots and other machines ab-
stracts models of human control strategy (HCS), learned directly
from human control data. This type of approach can be broadly
classified as “learning through observation.” A competing ap-
proach, which builds up complex behaviors through exploration
and optimization over time, is reinforcement learning. We seek to
unite these two approaches, previously considered disparate, and
show that each approach, in fact, complements the other. Specif-
ically, we propose a new algorithm, rooted in reinforcement
learning, for stabilizing learned models of human control strate-
gy. In this paper, we first describe the real-time driving simulator
which we have developed for investigating human control strate-
gies. Next, we motivate and describe our framework for modeling
human control strategies. We then illustrate how the resulting
HCS models can be stabilized through reinforcement learning
and finally report some positive experimental results with the pro-
posed algorithm.

1. Introduction

Models of human skill, which accurately emulate dynamic hu-
man behavior, have far reaching potential in areas ranging from
robotics to virtual reality to the intelligent vehicle highway sys-
tem. In robotics, such models could encapsulate necessary intelli-
gent control behaviors. For some robotic applications including
highway driving, efforts are underway to automate tasks that have
been traditionally carried out by humans. Also, in simulation, dy-
namic models of human behavior would not only enhance the re-
alism of virtual reality games, but also aid in the analysis of large-
scale human-in-the-loop systems.

Thus, a number of different researchers have endeavored in re-
cent years to abstract models of human skill directly from ob-
served human input-output data (see [1,2] for overviews of the
literature). In our work, we focus on a particular class of human
skill, which we refer to as human control strategy (HCS). In terms
of complexity, human control strategy lies between low-level
feedback control and high-level reasoning; as such, the term en-
compasses a wide range of physical tasks with a reasonably well-
defined input-output representation. Two classic examples of hu-

man control strategy are teleoperation of robots in remote envi-
ronment and automobile driving.

Unfortunately, capturing intelligent behaviors through human
modeling suffers from some potential weaknesses. Because hu-
man control strategies are dynamic, nonlinear, stochastic process-
es, analytic models of human actions tends to be quite difficult, if
not impossible, to abstract. Therefore, HCS models are usually
derived empirically, rather than analytically from real-time hu-
man input-output data. As such, traditional performance or stabil-
ity guarantees, like those in linear control for example, are
typically not available. Moreover, the performance of the learned
HCS models is necessarily limited by the expertise of the human
trainer. It would be naive to expect that learning algorithms,
which rely exclusively on the human’s training data, will generate
models superior to the human trainer.

In previous work, we have sought to address these issues
through task-specific performance measures and post-training
performance optimization [3]. Here, however, we propose a new
algorithm for improving the performance of learned HCS models
through reinforcement learning. Reinforcement learning denotes
a class of adaptive techniques that seek to learn to predict and con-
trol the behavior of an autonomous agent through that agent’s in-
teraction with his/her environment. Modern reinforcement
learning borrows heavily from the fields of operations research
and optimal control; in particular, the agent’s environment is ap-
proximated as a Markov Decision Process (MDP) [4], so that the
agent is asked to maximize rewards emitted by the MDP. 

Reinforcement learning offers powerful techniques with prov-
en success in solving problems that can be modeled within the
MDP framework [5, 6]. It too, however, suffers from some signif-
icant weaknesses. First, reinforcement learning techniques often
do not scale well to problems with high-dimensional input spaces.
The universe of admissible policies in high-dimensional input
spaces often becomes so large that the learning agent cannot even
begin to explore all possible options in a reasonable amount of
time. Furthermore, much of the literature in reinforcement learn-
ing deals only with problems where the agent has perfect knowl-
edge about the state of his/her environment. This condition is
rarely met in real life (e.g. noisy sensors, finite precision, etc.) and
techniques tailored for a perfect-knowledge environment can de-
generate to give arbitrarily poor results when uncertainty about
the agent’s state exists [7].

In this paper, we propose to combine reinforcement learning
with the modeling of human control strategies in order to address
the weaknesses inherent in each approach by itself. The HCS
model aids reinforcement learning by intelligently partitioning a



             
high-dimensional input space into regions that are meaningfully
different to the reinforcement learner. Even more significantly,
the HCS model can serve to “jump-start” the policy of the rein-
forcement learner. At the same time, reinforcement learning can
take an initially imperfect HCS model and — as we will show —
improve it’s performance substantially.

This paper is organized as follows. We first describe our ex-
perimental setup for recording human control data, a real-time,
dynamic graphic driving simulator. We then discuss our approach
for modeling human control strategies, and describe some corre-
sponding modeling experiments. Next we incorporate reinforce-
ment learning in our overall learning framework, and demonstrate
how reinforcement learning substantially improves the HCS mod-
els. We conclude the paper with some observations about the pro-
posed integration of modeling and reinforcement learning, and
propose some avenues for future research.

2. Real-time driving simulator

Driving is a prototypical example of human control strategy
that offers a rich environment for studying HCS modeling. The
task is inherently multi-input, multi-output (MIMO), and includes
control outputs which vary both continuously and discontinuous-
ly with sensor inputs. Below we describe a driving simulator that
we have developed for investigating human control strategies. We
choose virtual driving over real driving for a number of reasons:
(1) it is safer for the human operator, (2) it allows us better control
of our experimental environment, and (3) it allows us to vary the
control difficulty of the task without fear of accident or injury. 

Figure 1 shows the real-time graphic driving simulator which
we have developed as an experimental platform. In the simulator,
the human operator has independent control over the steering of
the car, the brake and the accelerator, although the simulator does
not allow both the gas and brake pedals to be pushed at the same
time. The state of the car is described by  [10,11],
where  is the lateral velocity of the car,  is the longitudinal

velocity of the car and  is the angular velocity of the car; the
controls are given by,

, (1)

, (2)

where  is the user-applied longitudinal force on the front tires
and  is the user-applied steering angle. 

Because of input device constraints, the force (or acceleration)
control  is limited during each 1/50 second time step, based on
its present value. If the gas pedal is currently being applied
( ), then the operator can either increase or decrease the
amount of applied force by a constant  or switch to braking.
Similarly, if the brake pedal is currently being applied ( ) the
operator can either increase or decrease the applied force by a sec-
ond constant  or switch to applying positive force. Thus, the

 and  constants define the responsiveness of each pedal.
In concise notation, denote  as the current applied force and

 as the applied force for the next time step. Then, for
,

(3)

and for ,

(4)

For the experiments in this paper, we collect human driving
data across randomly generated roads like the 20km one shown in
the map of Figure 1. The roads are described by a sequence of (1)
straight-line segments and (2) circular arcs. The length of each
straight-line segment, as well as the radius of curvature of each
arc, lies between 100 and 200 meters. Finally, the visible horizon
is set at 100m.

3. Human control strategy modeling
In modeling human control strategies, we want to map sensory

inputs to control action outputs. Viewed as a mapping from inputs
to outputs, note that the two controls — steering and acceleration
— are fundamentally quite different. For given human driving da-
ta, steering will tend to vary continuously with sensory inputs,
while acceleration will tend to vary discontinuously with sensory
inputs. This is not merely an artifact of the constraints in equa-
tions (3) and (4), but is caused primarily by the necessary switch-
ing between the brake and gas pedals, as is also the case for real
driving.

As was demonstrated in [8], continuous learning architectures
— whether they be fuzzy logic-based, neural network-based, or
memory-based — cannot faithfully reproduce control strategies
where discrete events or decisions introduce discontinuities in the
input-output mapping. Therefore, we have developed a hybrid
continuous/discontinuous modeling framework for handling the
two different control types [2,8]. The resulting architecture is il-
lustrated in Figure 2.

3.1 Input-output representation
A necessary condition for successful learning is, of course,

that the model be presented with those state and environmental
variables upon which the human operator relies. Thus, the inputs

Fig. 1: The driving simulator gives the user a perspective 
preview of the road ahead. The user has independent controls 
of the steering, brake, and accelerator (gas).

odometer steering wheel compass

car

map

vξ vη ω, ,{ }
vξ νη

ω

8000N– α 4000N≤ ≤

0.2rad– δ 0.2rad≤ ≤
α

δ

α

α 0>
∆αg

α 0<

∆αb
∆αg ∆αb

α k( )
α k 1+( )
α k( ) 0≥

α k 1+( ) α k( ) min α k( ) ∆αg+ 4000,( )  , ,{∈

max α k( ) ∆αg– 0,( ) ∆αb–, }

α k( ) 0<

α k 1+( ) α k( ) max α k( ) ∆αb– 8000–,( )  , ,{∈

min α k( ) ∆αb+ 0,( ) ∆αg, }



           
to the HCS model should include (1) current and previous state in-
formation , (2) previous output (control) information

, and (3) a description of the road visible from the current
car position. More precisely, the network input vector  at
time step  is given by,

, (5)

, (6)

. (7)

where  is the length of the state histories and  is the length
of the previous command histories presented to the model as in-
put. For the road description, we partition the visible view of the
road ahead into  equivalently spaced, body-relative  co-
ordinates of the road median, and provide that sequence of coor-
dinates as input to the network. Thus, the total number of inputs
to the model at any given time  is . The outputs
of the model are , the steering and acceler-
ation commands at the next time step, respectively.

3.2 Continuous control
Neural networks are powerful, nonlinear function approxima-

tors that have found a number of successful applications in non-
linear control [9]. We believe that neural networks are well suited
for learning the complex internal mappings from sensory inputs to
continuous control action outputs that are part of a given human’s
control strategy. Thus, in our modeling framework, the continu-
ous steering control is modeled by a cascade neural network,
which offers several advantages over more traditional neural net-
work architectures: (1) the network architecture is not fixed prior

to learning, but rather adapts as a function of learning [12]; (2)
hidden units in the neural network can assume variable activation
functions [10]; and (3) the weights in the neural network are
trained through the fast-converging node-decoupled extended
Kalman filter [13]. The flexibility of these cascade networks is
ideal for HCS modeling, since few a priori assumptions are made
about the underlying structure of the human controller.

3.3 Discontinuous control

Below, we derive a statistical framework for modeling discon-
tinuous control strategies, which model the control strategy not as
a deterministic functional mapping, but rather as a probabilistic
relationship between inputs and discontinuous outputs. This
framework will subsequently be applied to modeling the discon-
tinuous acceleration command .

3.3.1 General statistical framework

For now, we make the following assumptions. First, assume a
control task where at each time step , there is a choice of one of

 different control actions , . Second, assume
that we have sets of input vector training examples ,

, where each  leads to control action  at
the next time step. Finally, assume that we can train statistical
models , so that

, . (8)

is maximized, where  denotes the probability of model
 given .
Given an unknown input vector , we would like to choose

an appropriate, corresponding control action . Since model 
corresponds to action , we define,

, (9)

…

λ1

λ2

λN

O∗

P O∗ λ1( )

P Ai O∗( )

P Ai( )

P O∗ λ2( )

P O∗ λn( )

α

δ

xr yr,( )

vξ vη ω δ α, , , ,{ }
Continuous cascade network 
steering control

Signal-to-symbol 
conversion

Road description

Stochastic 
action choice

Discontinuous HMM 
acceleration control

Fig. 2: Overall control structure. Steering is controlled by a cascade neural network, while the discontinuous acceleration 
command is controlled by the HMM-based controller (shaded box).

vξ vη ω, ,{ }
δ α,{ }

ζ k( )
k

vξ k ns–( ) … v, ξ k 1–( ) vξ k( ), ,{

vη k ns–( ) … v, η k 1–( ) vη k( ), ,

ω k ns–( ) … ω k 1–( ) ω k( ), , , }

δ k nc–( ) … δ k 1–( ) δ k( ), , ,{

α k nc–( ) … α k 1–( ) α k( ), , , }

x1 k( ) x2 k( ) … xnr
k( ) y1 k( ) y2 k( ) … ynr

k( ), , , , , , ,{ }

ns nc

nr x y,( )

k 3ns 2nc 2nr+ +
δ k 1+( ) α k 1+( ),{ }

α

k
N Ai i 1 … N, ,{ }∈

ζ i
j{ }

j 1 2 … ni, , ,{ }∈ ζ i
j Ai

λ i

P λ i ζ i
j( )

j 1=

ni

∏ i 1 … N, ,{ }∈

P λ i ζ i
j( )

λ i ζ i
j

ζ∗
A∗ λ i

Ai

p ζ∗ Ai( ) p ζ∗ λ i( )≡



where  denotes the likelihood of  given . By
Bayes Rule,

, (10)

where,

, (11)

serves as a normalization factor,  represents the prior prob-
ability of selecting action  and  represents the poste-
rior probability of selecting action  given in the input vector

.
We now define the following stochastic policy for . Let,

 with probability , (12)

so that, at each time step , the control action  is generated
stochastically as a function of the current model inputs ( ) and
the prior likelihood of each action.

3.3.2 Statistical model

Hidden Markov Models [14] are powerful, trainable statistical
models which have previously been applied in a number areas, in-
cluding speech recognition [14, 15], modeling open-loop human
actions [16], and analyzing similarity between human control
strategies [17]. Because of their capacity to model arbitrary statis-
tical distributions, we choose HMMs to be the trainable statistical
models  of the previous section.

A discrete Hidden Markov Model1 consists of a set of 
states, interconnected through probabilistic transitions, and is
completely defined by , where  is the probabi-
listic  state transition matrix,  is the  output proba-
bility matrix with  discrete output symbols, and  is the n-
length initial state probability distribution vector. For an observa-
tion sequence O of discrete symbols, we can locally maximize

 (i.e.probability of model  given observation sequence
O) using the Baum-Welch Expectation-Maximization (EM) algo-
rithm. We can also evaluate  through the efficient For-
ward-Backward algorithm.

Using discrete HMMs, note from Figure 2 that the discontinu-
ous part of the HCS model consists of three distinct steps:
1. Input-space signals  are first converted to an observation

sequence of discrete symbols , in preparation for Hidden
Markov Model (HMM) evaluation.

2. The resulting observation sequence  is then evaluated on a
bank of discrete-output HMMs, each of which represents a
possible control action  and each of which has previously
been trained on corresponding human control data .

3. Finally, the HMM evaluation probabilities are combined with
prior probabilities for each action  according to equations
(10) and (12) to stochastically select and execute action 
corresponding to input observation sequence .

3.3.3 Signal-to-symbol conversion

In order to use discrete-output HMMs, we must first convert
the multi-dimensional real-valued input space, to a sequence of
discrete symbols. At a minimum, this process involves vector
quantizing the input-space vectors  to discrete symbols. We
choose the well-known LBG VQ algorithm [18], which iterative-
ly generates vector codebooks of size , ,
and can be stopped at an appropriate level of discretization, as de-
termined by the amount of available data. By optimizing the vec-
tor codebook on the human training data, we seek to minimize the
amount of distortion introduced by the vector quantization pro-
cess.

Now, suppose that we want to provide the models  with 
time-delayed values of the state and control variables as input.
There are at least two ways to achieve this. First, we could set,

(13)

in equations (5) and (6) and then train the models  on observ-
able sequences of length . Alternatively, we could set,

 and . (14)

In the first case, we vector quantize shorter input vectors but pro-
vide a longer sequence of observables  for HMM training
and evaluation. In the second case, we vector quantize the entire
input vector into a single observable, and base our action choice
solely on that single observable. This necessarily forces the
HMMs  to single-state models, such that each model is com-
pletely described by its corresponding output probability vector

.

While in theory both choices start from identical input spaces,
the single-observable, single-state case works better in practice.
There are two primary reasons for this. Because the amount of
data we have available for training comes from finite-length data
sets, and is therefore necessarily limited in length, we must be
careful that we do not overfit the models . Assuming fully for-
ward-connected, left-to-right models , increasing the number
of states from  to  increases the number of free (train-
able) parameters by , where  is the number of observ-
ables. Thus, having too many states in the HMMs substantially
increases the chance of overfitting, since there may be too many
degrees of freedom in the model. Conversely, by minimizing the
number of states, the likelihood of overfitting is minimized.

A second reason that the single-observable, single-state case
performs better relates to the vector quantization process. To un-
derstand how, consider that each input vector  minimally in-
cludes  road inputs. If we let , then for

, 80% of the input dimensions will be road-related,
while only 20% will be state related. Thus, the vector quantization
will most heavily minimize the distortion of the road inputs, while
in comparison neglecting the potentially crucial state and previ-
ous command inputs. With larger values of , and , the vector
quantization process relies more equally on the state, previous
control and road inputs, and therefore forms more pertinent fea-
ture (prototype) vectors for control. For (14) above,

(15)

1. Although continuous and semi-continuous HMMs have been devel-
oped, discrete HMMs are often preferred in practice because of their rel-
ative computational simplicity and reduced sensitivity to initial 
parameter settings during training [14].

p ζ∗ Ai( ) ζ∗ Ai

P Ai ζ∗( )
p ζ∗ Ai( )P Ai( )

p ζ∗( )
-------------------------------------=

p ζ∗( ) p ζ∗ Ai( )P Ai( )
i 1=

N

∑≡

P Ai( )
Ai P Ai ζ∗( )

Ai
ζ∗

A∗

A∗ Ai= P Ai ζ∗( )

k A∗
ζ∗

λ i
n

λ A B π, ,{ }= A
n n× B L n×

L π

P λ O( ) λ

P O λ( )

ζ∗
O∗

O∗

Ai
ζ i

j{ }

Ai
A∗

O∗

ζ k( )

L 2m= m 0 1 …, ,{ }∈

λ i m

ns nc 1= =

λ i
nO m=

ns nc m= = nO 1=

nO 1>

λ i

Bi

λ i
λ i

ns ns 1+( )
ns L+ L

ζ k( )
2nr nr 10=

ns nc 1= =

ns nc

P Ai ζ∗( ) P O∗ λ i( )P Ai( ) b j( )iP Ai( )=∝



where  denotes the th element in the  model’s output
probability vector . Equation (15) defines a learned stochastic
policy,

, , (16)

for each possible input observable  and action .

3.3.4 Action definitions

As we point out in equations (3) and (4), the acceleration com-
mand  is limited at each time step  to the following actions.
When  (the gas is currently active),

:  (17)

: , (18)

: , (19)

: , (20)

and when  (the brake is currently active),

: (21)

: , (22)

: , (23)

: , (24)

Actions  and  correspond to no action for the next time
step; actions  and  correspond to pressing harder on the
currently active pedal; actions  and  correspond to easing
off the currently active pedal; and actions  and  correspond
to switching between the gas and brake pedals. The constants

 and  are set by each human operator to the pedal respon-
siveness level he or she desires. We estimate the priors  by
the frequency of occurrence of each action  in the human con-
trol training data. For , 

, (25)

where  denotes the number of times action  was executed in
the training data set; similarly, for ,

(26)

3.4 Experiment
We ask Larry to drive over two different randomly generated

20km roads  and , where each run lasts approximately 10
minutes. A part of Larry’s second run, for example, is shown in
Figure 3(a) below. Larry’s driving behavior is representative of
other runs recorded by him, as well as other individuals, in that (1)
the steering control is reasonably continuous; (2) the acceleration
control has significant discontinuities due to rapid switching be-
tween the brake and gas pedals; and (3) Larry manages to stay on
the road (  deviation from the road median) for most of the
run, with only a few brief off-road episodes in especially tight
turns.

Now, we use Larry’s first run ( ) to train a hybrid continu-
ous/discontinuous HCS model (Figure 2), and reserve the run on
road  for testing the learned model. We use the following suit-
able input space representation for the model,

, , (27)

as discussed previously, and quantize the input vectors  to
 observables. Figure 3(b) plots a typical control trajec-

tory over road  for the resulting HCS model. In order to bench-
mark the performance of the hybrid discontinuous/continuous
HCS model, we also train a second HCS model which maps both
the steering  and the acceleration  with continuous cascade
neural networks, using the input representation of equation (27).
Figure 3(c) plots part of the control trajectory over road  for
this strictly continuous HCS model. Table 1, compares some ag-
gregate statistics for Larry’s original data and the two different
HCS models.

3.5 Discussion

From Figure 3 and Table 1 we make several observations.
First, we note that the continuous HCS model [Figure 3(c)], de-
spite the discontinuous acceleration command, is able to learn
something; that is, the model keeps the vehicle on the road (except
for one high-curvature turn that Larry himself was not able to han-
dle properly). Not only that, but it does so at approximately the
same average speed and lateral distance from the road median us-
ing a similar steering control strategy as Larry. In some respects,
the model’s control can even be considered superior to Larry’s
control. The model only rarely engages the brake, and maintains
tighter lateral road position.

If we judge the continuous model on how faithfully it repro-
duces Larry’s acceleration control strategy, however, it rates sig-
nificantly worse; that is, the model’s acceleration control looks
nothing like Larry’s. It was shown in [8] that Larry’s acceleration
control is not easily expressed in a continuous functional form,
such as a neural network, since the switching discontinuities in
the acceleration control essentially require very similar input vec-
tors to be mapped to radically different output vectors.

The hybrid continuous/discontinuous controller [Figure 3(b)]
appears to do a much better job in modeling Larry’s driving con-
trol strategy. In fact, we can quantify the degree of similarity be-
tween Larry’s control strategy and each of the two models, by
computing a stochastic similarity measure  which we have de-
veloped previously [17] for comparing human control strategies.
The similarity measure is capable of comparing stochastic, multi-
dimensional trajectories and yields a value between 0 and 1, with

b j( )i j λ i
Bi

π o a,( ) P a Ai o O j==( )= i j,∀

O j Ai

φ k
φ k( ) 0≥

A1 φ k 1+( ) φ k( )=

A2 φ k 1+( ) min φ k( ) ∆φg+ 4000,( )=

A3 φ k 1+( ) max φ k( ) ∆φg– 0,( )=

A4 φ k 1+( ) ∆φb–=

φ k( ) 0<

A5 φ k 1+( ) φ k( )=

A6 φ k 1+( ) max φ k( ) ∆φb– 8000–,( )=

A7 φ k 1+( ) min φ k( ) ∆φb+ 0,( )=

A8 φ k 1+( ) ∆φg=

A1 A5
A2 A6

A3 A7
A4 A8

∆φg ∆φb
P Ai( )

Ai
φ k( ) 0≥

P Ai( )
ni nkk 1=

4∑⁄
0




=
i 1 2 3 4, , ,{ }∈
i 5 6 7 8, , ,{ }∈

ni Ai
φ k( ) 0<

P Ai( )
0

ni nkk 5=
8∑⁄




=
i 1 2 3 4, , ,{ }∈
i 5 6 7 8, , ,{ }∈

ρ1 ρ2

5m±

ρ1

ρ2

ns nc 6= = nr 10= nO 1=

ζ k( )
L 512=

ρ2

δ α

ρ2

Table 1: Statistical comparison

Road Larry hybrid model
continuous 

model

 (mph)

 (m)

 (rad)

 (N)

ρ2

v 71.9 9.0± 70.7 8.1± 73.6 2.5±

d 0.72– 1.46± 1.38– 1.70± 1.00– 0.60±

δ 0.094± 0.081± 0.068±

α 2240 2620± 1970 2340± 1780 760±

σ



larger values indicating greater similarity. For the similarity com-
parison here, we include all relevant state and control variables

, and arrive at the following similarity values:

(28)

(29)

Hence, the hybrid controller is significantly more faithful to Lar-
ry’s control strategy than the strictly continuous controller. 

Unfortunately though, the hybrid controller also tends to be
significantly less stable than its continuous counterpart. Note, for
example, from Figure 3(c) that the hybrid controller veers off the
road at sec. While the assignment of priors in equations
(25) and (26) are the best estimates for  given the human
control data, they are sometimes problematic when dealing with
marginally stable training data. Consider, for example, Figure 4,
where we plot a small part of Larry’s first run. We observe that
Larry’s trajectory takes him close to the edge of the road; what
keeps him from driving off the road is the switch from the gas to
the brake at time . Now, because the action selection criterion
in equation (12) is stochastic, it is possible that the stochastic con-
troller will only brake at time , even if the time  is mod-
eled as the most likely time for a control switch. Braking at time

, however, may be too late for the car to stay in contact with
the road.

Ideally, we want to improve the stability of the hybrid HCS
model while still maintaining its relatively high fidelity to the hu-
man driving data. In the next section, we propose a reinforcement-
learning algorithm which does just that.

4. Reinforcement learning stabilization

In previous work [2], we attempted to address the stability
problem of the hybrid HCS models by reasoning that the stability
of the system (i.e. the simulated car) is directly related to the ki-
netic energy ,

, (30)

that is pumped into the system, where the expected value of ,
, is given by,

. (31)

Thus, in an attempt to improve the stability margin of the system,
we adjusted the model to generate  so that,

0 50 100 150 200

-0.2

-0.1

0

0.1

0.2

0 50 100 150 200

-4

-2

0

2

4

0 50 100 150 200

-8000

-6000

-4000

-2000

0

2000

4000

0 50 100 150 200

-0.2

-0.1

0

0.1

0.2

0 50 100 150 200

-4

-2

0

2

4

0 50 100 150 200

-8000

-6000

-4000

-2000

0

2000

4000

δ 
(r

ad
)

d 
(m

)
α

 (
N

)

0 50 100 150 200

-0.2

-0.1

0

0.1

0.2

0 50 100 150 200

-4

-2

0

2

4

0 50 100 150 200

-8000

-6000

-4000

-2000

0

2000

4000

time (sec)

δ 
(r

ad
)

α
 (

N
)

d 
(m

)

(a) (b) (c)time (sec)

δ 
(r

ad
)

d 
(m

)
α

 (
N

)

time (sec)

Fig. 3: (a) Part of Larry’s steering, acceleration and lateral offset trajectories over time; (b) part of the hybrid continuous/
discontinuous HCS model’s steering, acceleration and lateral offset trajectories; and (c) part of the purely continuous HCS 
model’s steering, acceleration and lateral offset trajectories.

vξ vη ω δ α, , , ,{ }

σ Larry hybrid model,( ) 0.57=

σ Larry continuous model,( ) 0.08=

t 20=
P Ai( )

ts

ts τ+ ts

ts τ+

actual switch to 
braking ( )ts

if model braking happens 
too late ( ).ts τ+

actual human 
control trajectory

Fig. 4: Instability can result if the hybrid controller switches 
to braking too late.

T

T φ k( )
k
∑∝

T
E T[ ]

E T[ ] E φ k( )[ ]
k
∑∝

φ' k( )



(32)

Condition (32) can be realized by increasing the priors for those
actions that decrease  — namely,  or , by some
small amount , and, to stay within probabilistic constraints, by
decreasing the priors  or , respectively, so that,

 and , or (33)

 and , (34)

where  determines the degree to which  is re-
duced.

The problem with modifications (33) and (34) is two-fold.
First, specific values of  need to be experimentally determined
for every new HCS model, and second, we cannot be sure that
(33) and (34) address all sources of instability. Therefore, we look
towards reinforcement learning for a more principled and less ad
hoc approach to improving model stability.

4.1 POMDPs
Our overall approach for stability improvement proposed be-

low seeks to modify the initial hybrid HCS model through rein-
forcement learning. We begin by introducing Partially
Observable Markov Decision Processes (POMDP) (see [19] for
an excellent discussion) as an appropriate modeling framework
for our driving domain. In other words, we propose that in the
driving domain (and our driving simulator, specifically), there ex-
ist meaningful underlying states that are sufficient statistics to de-
termine the next state of the driving agent, and therefore to make
optimal decisions, but that the agent is limited to observing a
small number of messages from the environment that encode and
compress this information. Formally, a POMDP is defined by a
tuple,

(35)

where  is a set of underlying Markovian states (possibly very
large or even infinite);  is a finite set of actions an agent can per-
form;  is a probabilistic transition function that
maps the current state and action to the next state; 
is a function that maps states and actions into real-valued scalar
rewards;  is a set of messages or observations; and  is a func-
tion that maps previous states and actions into probability distri-
butions over observations.

In order to apply the theory of POMDPs to our problem, we
must define a goal for the driving agent, as defined by the reward
function . We choose the following simple assignment of re-
wards. All states that are off the road are assigned a reward of ,
a form of punishment. Further, if the driving agent loses sight of
the road (deemed a “catastrophic failure”), we reset the agent to
its starting position after applying the  penalty for the previous
50 steps. This extended penalty prevents the agent from learning
that if it veers off the road, it should aim to reach a catastrophic
state so as to quickly return to the good initial position.

Notice that this assignment of rewards does not explicitly im-
pose any conditions on the speed of the vehicle, but rather ad-
dresses only stability concerns. This will allow us to monitor what
changes the agent imposes first to improve its stability. 

Given the reward function, we expect our agent to maximize
the average reward it receives over time. To make this criterion

well defined, certain technical assumptions on the underlying
MDP are required — namely, that under any stationary policy the
MDP forms a Markov chain with one irreducible class [4]. We
also allow our reinforcement agent to implement stochastic —
rather than deterministic — policies for two important reasons:
first, to admit the strategies that the HCS modeling architecture
requires, and second, to allow strategies that can be shown [7] to
be arbitrarily better than deterministic ones. That stochastic poli-
cies can achieve better results in the POMDP setting should not
be surprising, and may account for the success of stochastic mod-
eling techniques for human control strategies.

4.2 RL algorithm for stabilization
Well-studied algorithms in reinforcement learning (RL), like

Q-learning [20], suffer from significant weaknesses in our current
setting. First, little work has been done with stochastic policies in
reinforcement learning. Second, traditional RL techniques are not
capable of maintaining fidelity to prior human control data, since
they typically modify a policy at every step of policy evaluation.
Consequently, a learned policy would very quickly bear little re-
semblance to the human training data, defeating the main goal of
this paper.

Third, many of the current techniques in reinforcement learn-
ing have problems dealing with partial observability. Defining an
optimal policy can be difficult, as an agent cannot, in general,
maximize the value of all observations simultaneously. More-
over, the one-state updates that most algorithms employ do not
accurately estimate the value of each observation [7]. Finally, in
this domain, there are often many steps between punishments;
that is, policies have long mixing times, a further difficulty for re-
inforcement learning algorithms.

To deal with these difficulties, we propose an algorithm very
similar to the one described in [21]. Let  denote an obser-
vation/action pair; let  denote the current stochastic pol-
icy for all ; let  denote the current relative value for
all ; let  denote the current eligibility for all ;
and let  denote the current number of times that the pair

 has been visited. Also, let  denote the temporal-
difference learning discount factor; let  denote the total num-
ber of actions performed; and let  denote the current average re-
ward. Then the algorithm proceeds as follows:

1. Initialization:
At the start of the algorithm, we initialize the following values:

, , , (36)

, (37)

 = learned HCS model [equation (16)] (38)

 = initial observation (39)

2. Policy evaluation:
In evaluating the current policy, we iterate the steps below for

 steps. First, we choose an action  stochastically
according to the current policy  and the current obser-
vation , and then execute . Consequently  and 
are incremented,

, (40)

E φ' k( )[ ] E φ k( )[ ]<

E φ k( )[ ] A3 A4
εs

A2 A1

P' A3( ) P A3( ) εs+= P' A2( ) P A2( ) εs–=

P' A4( ) P A4( ) εs+= P' A1( ) P A1( ) εs–=

εs 0> E φ' k( )[ ]

εs

S A T R O Ω, , , , ,〈 〉

S
A

T S A×( ) S→
R S A×( ) ℜ→

O Ω

R
1–

1–

o a,( )
π o a,( )

o a,( ) h o a,( )
o a,( ) e o a,( ) o a,( )

v o a,( )
o a,( ) γ 0 1 ),[∈

tot
ρ

h o a,( ) 0= e o a,( ) 0= v o a,( ) 0= o∀ a,

ρ 0= tot 0=

π o a,( )

o

max a
π o a,( )

o a v o a,( ) tot

v o a,( ) v o a,( ) 1+=



(41)

Defining,

 = reward after execution of , (42)

 (previous observation), and (43)

 = current observation after execution of , (44)

we compute the differential reward  for action  versus the
reward we would otherwise have predicted,

, (45)

where  is the value of the observation (state)  defined
as,

(46)

We then update the value function ,

, (47)

,

, (48)

and the eligibility function ,

, (49)

, . (50)

Finally, we update the average reward ,

(51)

3. Policy improvement:
We are now interested in updating the policy  for those
observations (states)  with low values  (i.e. poor sta-
bility). Hence, if,

, (52)

and,

, (53)

then we modify our current policy by,

(54)

for some constant  and,

(55)

In other words, the policy for states with poor stability is mod-
ified if the value of the best action for those states is signifi-
cantly larger than the value of those states themselves
[equation (53)].

Our algorithm attempts to estimate the average reward  of a
policy and the relative values  [22] of each observation/
action pair given the current policy . The algorithm does
this through temporal difference learning [23] to provide multi-
ple-step updates for the relative values . The update rule
can be thought of as an on-policy version of -learning [24] with

replacing eligibility traces, except that we use stochastic policies,
rather than deterministic ones.

After estimating the values of observations, we apply the Pol-
icy Improvement Theorem in [21], which states that perturbing
our policy toward actions that maximize  will improve the
average reward as long as the perturbations  are small. Thus, we
carefully choose to perturb the policy only for those observations

 that stand to have a significant improvement, as indicated by
equation (53). We expect that this method of policy improvement
will achieve large gains in stability, while incurring only a small
loss of fidelity with respect to the original HCS model.

4.3 Experiment
We now apply the algorithm described in the previous section

to the hybrid HCS model learned from Larry’s control data. The
stabilization algorithm is executed on roads that are statistically
similar to road  with,

, , , (56)

The resulting modified model exhibits a dramatic improvement in
stability. Where before Larry’s model rarely could travel for more
than 5km without a catastrophic failure, the modified HCS model
completes100km courses without any catastrophic failures. Fur-
thermore, it does so with little drop in average speed and fidelity,
as illustrated in Table 2 below.

4.4 Discussion and future work
Table 2 clearly demonstrates that the RL optimization of the

initial HCS model improves the model’s stability. It was not pos-
sible to achieve similar such improvements using the ad hoc sta-
bilization in equations (33) and (34). Let us illustrate
schematically why this might be the case. In Figure 5, the policy

 is drawn as a grid, where each box in the grid represents
one observation/action pair. (For readability, we drew a grid with
only 20 possible observations .) Boxes in the grid that are shad-
ed are modified after training the HCS model, while boxes that are
white represent unmodified states. As part (a) of Figure 5 indi-
cates, the ad hoc stabilization procedure of, for example, equation
(33) modifies a set number of  pairs by a fixed amount. In
the RL stabilization procedure [Figure 5(b)], however, any 
pair with initial probability greater than zero can potentially be
modified by some not predetermined amount. It therefore has sig-
nificantly greater flexibility in stabilizing the initial HCS model,
while still retaining its fidelity to the human control data. More-
over, the RL stabilization procedure is not based on some unprov-

tot tot 1+=

r a

o' o=

o a

∆ a

∆ r ρ– h o( ) h o' a,( )–+=

h o( ) o

h o( ) h o b,( )π o b,( )
b
∑≡

h o a,( )

h o' a,( ) h o' a,( ) ∆ v o' a,( )⁄+=

h o'' a'',( ) h o'' a'',( ) ∆ e o'' a'',( )⋅
v o' a,( )

-----------------------------+=

o'' a'',( )∀ o' a,( )≠

e o a,( )

e o' a,( ) 1=

e o'' a'',( ) γ e o'' a'',( )⋅= o'' a'',( )∀ o' a,( )≠

ρ

ρ ρ ∆ tot⁄+=

π o a,( )
o'' h o''( )

h o''( ) 0<

max
a''

h o'' a'',( )[ ] h o''( ) ∆min+>

π o'' a'',( ) 1 ε–( )π o'' a'',( ) επ'+=

∆min

π'
1 argmax

a''
h o'' a'',( )[ ]

0 otherwise



=

ρ
h o a,( )

π o a,( )

h o a,( )
R

Table 2: Comparisons

Data set  (mph) % off-roada

a. Distance from median larger than 5 meters.

similarity 

Larry 73.1 1.63 0.75b

b. Self-similarity between Larry’s two runs.

Original 
model

72.4 9.02 0.57

Perturbed 
model

70.1 1.23 0.45

h o a,( )
ε

o''

ρ1

ε 0.05= γ 0.96= max 20 000,= ∆min 0.12=

vavg σ

π o a,( )

o

o a,( )
o a,( )



en hypothesis, but rather on active exploration and consequent
optimization of the actual system.

We believe that this work opens up a promising direction for
future research by combining learning through observation (from
humans) with subsequent reinforcement-learning-based optimi-
zation. Little work has been done previously to incorporate prior
knowledge into reinforcement learning, and this paper offers one
potentially successful approach for tackling this problem. Cur-
rently, we are exploring the modeling framework of this paper
with more varied data (from different humans), varied learning
parameters, algorithmic variations and applications in other learn-
ing domains. This future work will go a long way towards validat-
ing the usefulness and generality of the proposed modeling
framework.

References

[1] M. C. Nechyba and Y. Xu, “Human Control Strategy: Ab-
straction, Verification and Replication,” IEEE Control Sys-
tems Magazine, vol. 17., no. 5, pp. 48-61, 1997.

[2] M. C. Nechyba, Learning and validation of human control
strategies, Ph.D. thesis, Carnegie Mellon University, 1998.

[3] J. Song, Y. Xu, Y. Yam and M. C. Nechyba, “Optimization
of Human Control Strategies with Simultaneously Perturbed
Stochastic Approximation,” Proc. IEEE Int. Conference on
Intelligent Robots and Systems, vol. 2, pp. 983-8, 1998.

[4] M. L. Puterman, Markov Decision Processes: Discrete Sto-
chastic Dynamic Programming, John Wiley & Sons, Inc.,
New York, 1994.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, The MIT Press, Cambridge, 1998.

[6] L. P. Kaelbling, M. L. Littman and A. W. Moore, “Rein-
forcement Learning: A Survey,” Journal of Artificial Intelli-
gence Research, vol. 4, pp. 237-85, 1996.

[7] S. P. Singh, T. Jaakkola and M. Jordan, “Learning Without
State Estimation in Partially Observable Markovian Deci-
sion Processes,” Proc. Eleventh Int. Conf. on Machine
Learning, 1994.

[8] M. C. Nechyba and Y. Xu, “On Discontinuous Human Con-
trol Strategies,” Proc. IEEE Int. Conference on Robotics and
Automation, vol. 3, pp. 2237-43, 1998.

[9] W. T. Miller, R. S. Sutton and P. I. Werbos, eds., Neural Net-
works for Control, MIT Press, Cambridge, 1990.

[10] M. C. Nechyba and Y. Xu, “Learning and Transfer of Real-
Time Human Control Strategies,” Journal of Advanced
Computational Intelligence, vol. 1, no. 2, pp. 137-54, 1997.

[11] H. Hatwal and E. C. Mikulcik, “Some Inverse Solutions to
an Automobile Path-Tracking Problem with Input Control of
Steering and Brakes,” Vehicle System Dynamics, vol. 15, pp.
61-71, 1986.

[12] S. E. Fahlman, L. D. Baker and J. A. Boyan, “The Cascade
2 Learning Architecture,” Technical Report, CMU-CS-TR-
96-184, Carnegie Mellon University, 1996.

[13] M. C. Nechyba and Y. Xu, “Cascade Neural Networks with
Node-Decoupled Extended Kalman Filtering,” Proc. IEEE
Int. Symp. on Computational Intelligence in Robotics and
Automation, vol. 1, pp. 214-9, 1997. 

[14] L. R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proc. IEEE,
vol. 77, no. 2, pp. 257-86, 1989.

[15] X. D. Huang, Y. Ariki and M. A. Jack, Hidden Markov Mod-
els for Speech Recognition, Edinburgh Univ. Press, 1990.

[16] J. Yang, Y. Xu and C. S. Chen, “Human Action Learning
Via Hidden Markov Model,” IEEE Trans. Systems, Man and
Cybernetics, Part A, vol. 27, no. 1, pp. 34-44, 1997.

[17] M. C. Nechyba and Y. Xu, “Stochastic Similarity for Vali-
dating Human Control Strategy Models,” IEEE Trans. on
Robotics and Automation, vol. 14, no. 3, pp. 437-51, 1998.

[18] Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vec-
tor Quantizer Design,” IEEE Trans. Communication, vol.
COM-28, no. 1, pp. 84-95, 1980.

[19] L. P. Kaelbling, M. L. Littman and A. R. Cassandra, “Plan-
ning and Acting in Partially Observable Stochastic Do-
mains,” Artificial Intelligence, vol. 101, no. 1-2, pp. 99-134,
1998.

[20] C. J. Watkins, Learning from Delayed Rewards, Ph.D. the-
sis, King’s College, Cambridge, UK, 1989.

[21] T. Jaakkola, S. P. Singh and M. I. Jordan, “Monte-Carlo Re-
inforcement Learning in Non-Markovian Decision Prob-
lems,” Advances in Neural Information Processing Systems
7, G. Tesauro, D. S. Touretzky and T. K. Lee, eds., MIT
Press, Cambridge, 1995.

[22] D. P. Bertsekas, Dynamic Programming: Deterministic and
Stochastic Models, Prentice-Hall, Englewood Cliffs, NJ,
1987.

[23] R. S. Sutton, “Learning to Predict by the Method of Tempo-
ral Difference,” Machine Learning, vol. 3, no. 1, pp. 9-44,
1988.

[24] A. Schwartz, “A Reinforcement Learning Method for Maxi-
mizing Undiscounted Rewards,” Proc. Tenth Int. Conf. on
Machine Learning, pp. 298-305, 1993.

Fig. 5: (a) The ad hoc stabilization procedure modifies a fixed 
set of  pairs by a fixed amount, while (b) the RL 
stabilization procedure adjusts (by a variable amount) only 
those  that most affect stabilization.

o a,( )

o a,( )

(a)

(b)

o

a

o

a


