EEL5840: Elements of Machine Intelligence

Announcements

• Reading Assignment:
 > Nilsson chapters 9, 10
• Announcements:
 > Tentative 2nd Exam Date:
 – 12/03/15 (Thursday)
 > LISP Project due 12/01/15
• Today’s Handouts in WWW:
 > Outline Class 23
• Web Site
 > www.mil.ufl.edu/eel5840
 > Software and Notes

EEL5840: Elements of Machine Intelligence

Today’s Menu

• Finish up Heuristic Search (Chapter 9)
 ⇒IDA, IDA* & RBFS
 ⇒Search Efficiency
Heuristic Searches

Related Algorithms

• Bi-Directional Search
 > Breadth-First may expand less nodes bi-directionally than uni-directionally as shown in the Figure.
 > However, if the $h(n)$ used by the bidirectional process are slightly inaccurate, the search frontiers may not intersect.

• Staged Search: Prune the tree at some stages of computation in order to free up storage. At the end of each stage you keep only the most promising nodes (those with good f values). Obviously, staged search carries no guarantee of optimality

• Limitation of Successors - to keep $\Gamma(n)$ small we also keep only the “best” nodes
 > We will need additional problem domain knowledge (i.e., a DEADEND)
 > We either modify A^* or assign to some nodes very high $h(n)$ values
 > Consider evaluating $h(\Gamma(n))$ before evaluating the DBs themselves and only select those nodes with high promise
Heuristic Search

- **Iterative Deepening**
 - Enjoys the same linear memory requirements of DFS while guaranteeing that a goal node of minimal depth will be found - memory grows linearly with the depth of the goal.
 - Successive depth-first searches are conducted - each with a depth bound increasing by 1 until a goal node is found.

How many nodes are expanded by BFS?
Assuming uniform branching factor b, with a goal at depth d

$$1 + b + b^2 + \ldots + b^d = \frac{(b^{d+1} - 1)}{(b - 1)}$$

How many nodes are expanded by iterative deepening?
Down to level j we have $N_{idj} = \frac{(b^{j+1} - 1)}{(b - 1)}$

At worst, we must conduct d such searches for the goal at depth d

$$N_{id} = \sum_{j=0}^{d} \frac{(b^{j+1} - 1)}{(b - 1)} = \frac{(b^{d+2} - 2b^d + d + 1)}{(b - 1)^2}$$

For large d this reduces to

$$N_{id}/N_{bf} \approx \frac{b}{(b - 1)}$$

For $b=10$ and large d this is about 1.11% or ID expands about 11% more nodes than BFS.
Heuristic Search

- **IDA** (Korf, 1985)
 - Allows us to find minimal cost paths with memory that grows linearly with the depth of the goal.
 - Execute a series of depth-first searches. In the first search we establish a cost cutoff equal to \(f(n_0) = g(n_0) + h(n_0) \) with \(n_0 = s \).
 - Expand nodes in a DFS fashion—backtrack whenever the \(f \) value of a successor of an expanded node exceeds the cutoff value.
 - If this terminates at a goal node, then you have a minimal path, else the cost of an optimal path must exceed the cutoff value.
 - Use as your next cutoff value the value of a node visited but not expanded.
 - IDA* does have to repeat node expansions, but there are potential tradeoffs involving reduced memory requirements and ease of implementation.

Performance Issues

- **Penetrance**
 - The penetrance \(P \) of a search algorithm measures the extent to which the search focuses toward a goal and does not wander off.
 - \(P = \frac{L}{T} \) where \(L \) = length of a found path to the goal
 - \(T \) = total number of nodes (excluding \(s \))
 - \(P_{\text{max}} = 1 \)
 - \(P \) is a function (difficulty, efficiency of search)
 - \(T \) grows faster than \(L \) and thusly \(P \) is usually high for small \(L \) and small for large \(L \)
 - \(P \) measures when a tree is elongated vs bushy

- **Branching Factor**
 - The branching factor \(B \) is based on a tree having
 - depth equal to path length
 - a total number of nodes = to the nodes generated during search
 - \(B \) measures the constant number of successors of each node in such a tree
EEL5840: Elements of Machine Intelligence

Performance Issues

Branching Factor

\[B = B^2 + B^3 + \ldots + B^L = N \]

L = total path length
N = total number of nodes

\[\frac{[B^{L-1}]B}{B - 1} = N \]

if \(B = 1 \) we have a focused search

For the problem \(f(n) = d(n) + W(n) \) the \(B \) value is \(B \approx 1.3 \) For a depth of 18, \(N \approx 500 \) nodes and for a depth of 20, \(N \approx 1,000 \! \)