Fuzzy Logic

IMDL
{By Kevin Harrelson now at Harris Corporation}

Fuzzy Logic: What is it???

• It does not involve putting fake fur on robots.
• It is a different way of looking at the world.
• It is a superset of Boolean logic!
• It deals with “shades of gray!”
A Better Method to Deal With the Real World

- Not just “True” and “False.”
- Takes on a range of values
 - True
 - Mostly True
 - Half True
 - Kind of True
 - False
- Values range from 0 to 1.
 - Including decimal values (0.2, 0.7, etc.)

Why?
Without Fuzzy Logic

With Fuzzy Logic
Without Fuzzy Logic

```c
#include <confusing.h>

void bladder();
{
    if ( read_sensor(3.14159) > sqrt(42) )
    {
        do_something_confusing( make_noise(12) );
    }

    junk[max(my_IQ,my_shoe_size)]= peek(0x0f00);
    four_score[7] = "years ago";
}
```

With Fuzzy Logic

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Straight</td>
<td>Straight</td>
</tr>
<tr>
<td>Left</td>
<td>Straight</td>
<td>Straight</td>
</tr>
</tbody>
</table>
Now, Let’s see how this works...

Fuzzy Logic Process

“Crisp” Input → Fuzzification → “Fuzzy” Input

Fuzzy Logic -or- F.A.M.

“Fuzzy” Output → De-Fuzzification → “Crisp” Output
The First Step...

Fuzzification

How tall is Kevin?

- Very Tall?
- Tall?
- Average?
- Short?
- Very Short?
How tall is Kevin?

- Very Tall (7 feet)?
- Tall (6 feet)?
- Average (5 feet)?
- Short (4 feet)?
- Very Short (3 feet)?

Fuzzification Rules

<table>
<thead>
<tr>
<th>Degree of Membership</th>
<th>Very Short</th>
<th>Short</th>
<th>Average</th>
<th>Tall</th>
<th>Very Tall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (feet)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Some Examples:

If you are 5 feet:
• Very tall - 0%
• Tall - 0%
• Average - 100%
• Short - 0%
• Very Short - 0%

Some Examples:

If you are 5½ feet:
• Very tall - 0%
• Tall - 50%
• Average - 50%
• Short - 0%
• Very Short - 0%

Same as Boolean logic (so far...)

Some Examples:

If you are 5½ feet:
• Very tall - 0%
• Tall - 50%
• Average - 50%
• Short - 0%
• Very Short - 0%

NOT Boolean logic (Whoa. Cool!)

Some Examples:

If you are 5⅛ feet:
• Very Tall (7 feet)?
• Tall (6 feet)?
• Average (5 feet)?
• Short (4 feet)?
• Very Short (3 feet)?
How tall is Kevin?

Kevin is 6’ 2”
- Very Tall - 16%
- Tall - 84%
- Average - 0%
- Short - 0%
- Very Short - 0%

Fuzzy Representation

- All fuzzy variables are theoretically represented as a number between 0 and 1.

- The fuzzy number can be represented on a computer as a number between 0 and 255.
Some Hints

- Fuzzy values are **NOT** probabilities.
- HOWEVER, it might help to think of them as probability values.

The Second Step...

Fuzzy Logic & the FAM
Fuzzy Operators: AND

FAND(\(A,B\)) - Fuzzy AND = min(\(A,B\))
FAND(100, 30) = 30
FAND(20, 250) = 20
FAND(1, 0) = 0 -- Just like boolean logic
FAND(1, 1) = 1 -- Geeeee. This too!

Fuzzy Operators: OR

FOR(\(A,B\)) - Fuzzy OR = max(\(A,B\))
FOR(100, 30) = 100
FOR(20, 250) = 250
FOR(1, 0) = 1 -- Just like boolean logic
FOR(0, 0) = 0 -- Geeeee. This too!
Fuzzy Operators: NOT

FNOT(A) - Fuzzy NOT = 100% - A
(100% defined as 255)

FNOT(100) = 155
FNOT(250) = 5
FNOT(255) = 0
FNOT(0) = 255

– See the similarity to Boolean logic??????

Fuzzy Associative Memory
(FAM)

The Next Step
Fuzzy Associative Memory

- It is a Fuzzy Truth Table
- Shows all possible outputs for all possible inputs
- Easy to create!

FAM Example

FUZZY-BOT
First, the sensors

Sharp Sensor Mappings:
- Nothing = 80
- Very Far = 100
- Far = 120
- Near = 130 -- *Note: non-linear spacing*
- Very Near = 140

Second, the Motors

Direction Output Mappings:
- Hard Left = -100
- Left = -20
- Straight = 0
- Right = 20
- Hard Right = 100
Lastly, the FAM (rule table)

<table>
<thead>
<tr>
<th>Left Sensor</th>
<th>VN</th>
<th>N</th>
<th>F</th>
<th>VF</th>
<th>VVF</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN</td>
<td>HL</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>N</td>
<td>HL</td>
<td>L</td>
<td>HR</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>F</td>
<td>HL</td>
<td>HL</td>
<td>L</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>VF</td>
<td>HL</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>VVF</td>
<td>HL</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

- V=Very
- N=Near
- F=Far
- N=Near
- H=Hard
- L=Left
- R=Right
- S=Straight

FAM Operation

- AND the associated inputs…
- OR the result with the result for that output group.
FUZZ-BOT Example

- Left Sensor
 - Very Near = 80%
 - Near = 20%

- Right Sensor
 - Near = 30%
 - Far = 70%

<table>
<thead>
<tr>
<th>Left Sensor</th>
<th>VN 80%</th>
<th>N 20%</th>
<th>F 0%</th>
<th>VF 0%</th>
<th>VVF 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN 80%</td>
<td>HL 0%</td>
<td>HR</td>
<td>HR</td>
<td>HR 0%</td>
<td>HR 0%</td>
</tr>
<tr>
<td>N 20%</td>
<td>HL 0%</td>
<td>L</td>
<td>HR</td>
<td>R 0%</td>
<td>R 0%</td>
</tr>
<tr>
<td>F 0%</td>
<td>HL 0%</td>
<td>HL 0%</td>
<td>L 0%</td>
<td>S 0%</td>
<td>S 0%</td>
</tr>
<tr>
<td>VF 0%</td>
<td>HL 0%</td>
<td>L 0%</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>VVF 0%</td>
<td>HL 0%</td>
<td>L 0%</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

HL = 0%
L = 20%
S = 0%
R = 0%
HR = 30% OR 70% OR 20% = 70%

NOTE:
0+20+0+0+70 ≠ 100%
Can We Simplify This???

Removing the FAM

Simplifying the Table

1) Group the common Outputs (similar to K-Maps)

2) For each block:
 (each value OR’d together) AND
 (each value OR’d together)

3) OR the output of each block together
<table>
<thead>
<tr>
<th>Left Sensor</th>
<th>VN 0%</th>
<th>N 30%</th>
<th>F 70%</th>
<th>VF 0%</th>
<th>VVF 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN 80%</td>
<td>HL 0%</td>
<td>LR 30%</td>
<td>HR 70%</td>
<td>HR 0%</td>
<td>HR 0%</td>
</tr>
<tr>
<td>N 20%</td>
<td>HL 0%</td>
<td>L 20%</td>
<td>HR 0%</td>
<td>R 70%</td>
<td>R 0%</td>
</tr>
<tr>
<td>F 0%</td>
<td>HL 0%</td>
<td>L 0%</td>
<td>L 0%</td>
<td>S 0%</td>
<td>S 0%</td>
</tr>
<tr>
<td>VF 0%</td>
<td>HL 0%</td>
<td>L 0%</td>
<td>S 0%</td>
<td>S 0%</td>
<td>S 0%</td>
</tr>
<tr>
<td>VVF 0%</td>
<td>HL 0%</td>
<td>L 0%</td>
<td>S 0%</td>
<td>S 0%</td>
<td>S 0%</td>
</tr>
</tbody>
</table>

\[
HL = (RVN AND (LVN OR LN OR LF OR LVF OR LVVF)) OR (LF AND RN)
\]

FUZZ-BOT Example

- HL = (RVN AND (LVN OR LN OR LF OR LVF OR LVVF)) OR (LF AND RN)
- L = (LN AND RN) OR (LF AND RF) OR ((LVF OR LVVF) AND RN)
- S = ((LVF OR LVVF) AND (RF OR RVF OR RVVF)) OR (LF AND (RVF OR RVVF))
- R and HR are left as an exercise to the student.
The Final Chapter...

De-Fuzzification

Defuzzification: Two Methods

1) Winner Take All

2) Weighted Average
Winner Take All

• Output “Hard Right” = 70%
• It is the winner!
• Output = 100 (from output mapping)
• Looses some of the smoothness of fuzzy logic.

Direction Output Mappings
• Hard Left = -100
• Left = -20
• Straight = 0
• Right = 20
• Hard Right = 100

Output of FAM
HL = 0%
L = 20%
S = 0%
R = 0%
HR = 70%

Weighted Average

• Output “Hard Right” = 70%
• Output “Left” = 20%
• Output = 73.3

Direction Output Mappings
• Hard Left = -100
• Left = -20
• Straight = 0
• Right = 20
• Hard Right = 100

Output of FAM
HL = 0%
L = 20%
S = 0%
R = 0%
HR = 70%
Any Questions?